Indexed by:
Abstract:
Gully erosion has been identified as a major driver of the formation of loess surface erosion, and the development process of the gully profoundly affects the development and evolution of the loess landform. In this study, six typical geomorphological plots of the Loess Plateau were selected, and the digital elevation model of these plots were used as the basic data source to extract the gully system. The weighted complex network model of the gully in the Loess Plateau was constructed using the gully nodes, gully source points, and water outlet points as the network nodes, the spatial topological relationship between the network nodes as the network edges, and the elevation difference as the weight. Through quantitative description and analysis of the nodal characteristics and spatial structure of the loess gully in the Loess Plateau, the spatial pattern and changes of the network characteristics of different landform types of the Loess Plateau were obtained. We further analyzed the development process and evolution mechanism of the loess valley landform. The results show that: The cumulative probability of the node strength of the gully weighted networks in the Loess Plateau was exponentially distributed. Correlation coefficients were all above 0.80, and the complex networks were in the transition period from random network to scale- free network; From the south to the north plots, the node strength values of the characteristic points of the gully showed a gradually decreasing trend, and the distribution was asymmetric, with higher erosion intensity and more node distribution on the right side of the gully; The average path length and the network structure entropy in Suide area reached the maximum of 30.94 and 6.31, respectively, and gradually decreased at the north and south sides. The change curve of network density was the opposite. The connectivity, stability, and compactness of the network structure reflected the erosion degree of different gully geomorphic types and evolution mechanism of the geomorphic system; The correlation coefficient between network index and traditional geomorphic index was more than 0.85. This parameter emphasized the attribute characteristics and spatial topological relationship of different valley feature points and the differences of feature points in spatial relationship. It can scientifically and accurately express the complexity and development stage of the geomorphology and is expected to be used as an important parameter to study the geomorphological characteristics of the gully. Our method considered the spatial topological relationship of the gully topography and the integrity of the system and provided a new idea for the research of complex surface morphology. © 2021, Science Press. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Geo-Information Science
ISSN: 1560-8999
CN: 11-5809/P
Year: 2021
Issue: 7
Volume: 23
Page: 1196-1207
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: