Indexed by:
Abstract:
极限学习机自编码器作为无监督降维方法,通过重构输入数据来提取原始样本特征,具有学习速度快、泛化性能高等优势.但经典极限学习机自编码器表示能力有限,使得重构输出和原始样本之间的残差不可避免.因此借鉴残差补偿思想,提出基于残差补偿的极限学习机自编码器,通过不断对重构残差补偿式学习来改善ELM-AE的表示能力.在6个公开数据集上进行K-means聚类实验,结果表明基于残差补偿的极限学习机自编码器(RCELM-AE)能够有效提高聚类准确率.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2022
Issue: 01
Volume: 50
Page: 16-23
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: