Indexed by:
Abstract:
Ultrathin Bi4Ti3O12 nanosheets (NS) with the thickness about 3.9 nm were successfully synthesized by a hydrothermal method and were used as a photocatalyst for the oxidation of benzyl alcohol (BA) to benzaldehyde (BAD). The photocatalytic performance of NS is about 8 times higher than that of bulk Bi4Ti3O12. In-situ FTIR of pyridine adsorption and NH3-TPD reveal that NS has more surface Lewis acid sites (Ti4+) for the adsorption and activation of BA. The photogenerated electrons (e(-)) and holes (h(+)) of NS can be fully used to produce the superoxide radicals and carbon-centered radicals, respectively. The monolayer nanosheet structure of NS not only greatly promotes the separation of photogenerated carriers, but also achieves the efficient activation of BA molecules via the CAO center dot center dot center dot Ti coordination. This work successfully reveals the surface/interface interactions between the surface active sites of a photocatalyst and the reactive molecules via using ultrathin nanosheet as a molecular platform. (C) 2021 Elsevier Inc. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF COLLOID AND INTERFACE SCIENCE
ISSN: 0021-9797
Year: 2022
Volume: 608
Page: 2529-2538
9 . 9
JCR@2022
9 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 49
SCOPUS Cited Count: 49
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: