Indexed by:
Abstract:
Li13.9Sr0.1Zn(GeO4+delta)(4) (LSZG) materials can exhibit proton conduction by Li+/H+ ion exchange in hydrogen atmosphere. It can be used in solid oxide fuel cells (SOFCs) as an electrolyte. In this study, In3+ doped LSZG powders are synthesized by sol-gel method. X-ray diffraction, scanning electron microscopy, thermal gravimetric analyzer, and electrochemical impedance spectroscopy are used to investigate the effects of In doping on LSZG. All Li13.9Sr0.1Zn(GeO4+delta)(4) (LISZG, 0 <= x <= 0.3) ceramics exhibit the same phase with LSZG. The dopant of In promotes the sintering activity and Li+/H+ ion exchange rate of LSZG. The optimum doping of In is x = 0.2. At 600 degrees C, Li13.7In0.2Sr0.1Zn(GeO4+delta)(4) (0.2LISZG) shows a proton conductivity of 0.094 S/cm under 0.9 V direct current bias voltage. In addition, the single cell based on 0.2LISZG electrolyte is prepared, and it has been demonstrated that the practical utilization of 0.2LISZG in IT-SOFCs is feasible.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CERAMICS INTERNATIONAL
ISSN: 0272-8842
Year: 2022
Issue: 8
Volume: 48
Page: 11304-11312
5 . 2
JCR@2022
5 . 1 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:91
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: