Indexed by:
Abstract:
Potassium metal battery (KMB) have been recognized as a feasible alternative electrochemical energy device for practical application. However, the dendrite growth and the instability of the potassium anode are the major issues hindering its practicability. In this paper, a layer of Pd is coated on the rib surface of Cu foam through a replacement reaction in the liquid-phase synthesis to form Pd/Cu foam current collector, and then K metal is deposited on this Pd/Cu foam to prepare the K/Pd/Cu foam anode material for KMBs. This K/Pd/Cu foam is assembled into a KMB using Prussian blue (PB) as the cathode material to achieve high capacity and cycle-ability even at low-temperature (-20 ?). Experimental results confirm that this K/Pd/Cu foam can significantly reduce K dendrite growth, increase K+ ion diffusion within the solid electrolyte interface (SEI) film and reduce the side reaction. Based on the experiment measurements, material characterization, and theoretical DFT calculations, the possible enhancement mechanism of the highly potassiophilic interface of Pd/Cu foam during the cycling of KMB is also explored.
Keyword:
Reprint 's Address:
Version:
Source :
NANO ENERGY
ISSN: 2211-2855
Year: 2022
Volume: 96
1 7 . 6
JCR@2022
1 6 . 8 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:91
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: