Indexed by:
Abstract:
The molecular imprinting technique (MIT), also described as the "lock to key" method, has been demonstrated as an effective tool for the creation of synthetic polymers with antibody-like sites to specifically recognize target molecules. To date, most successful molecular imprinting researches were limited to small molecules (<1500 Da); biomacromolecule (especially protein) imprinting remains a serious challenge due to their large size, chemical and structural complexity, and environmental instability. Nevertheless, protein imprinting has achieved some significant breakthroughs in imprinting methods and applications over the past decade. Some special protein-imprinted materials with outstanding properties have been developed and exhibited excellent potential in several advanced fields such as separation and purification, proteomics, biomarker detection, bioimaging and therapy. In this review, we critically and comprehensively surveyed the recent advances in protein imprinting, particularly emphasizing the significant progress in imprinting methods and highlighted applications. Finally, we summarize the major challenges remaining in protein imprinting and propose its development direction in the near future.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF MATERIALS CHEMISTRY B
ISSN: 2050-750X
Year: 2022
Issue: 35
Volume: 10
Page: 6571-6589
7 . 0
JCR@2022
6 . 1 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:91
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: