• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Wang, Luoyan (Wang, Luoyan.) [1] | Zhou, Xiaogen (Zhou, Xiaogen.) [2] | Nie, Xingqing (Nie, Xingqing.) [3] | Lin, Xingtao (Lin, Xingtao.) [4] | Li, Jing (Li, Jing.) [5] | Zheng, Haonan (Zheng, Haonan.) [6] | Xue, Ensheng (Xue, Ensheng.) [7] | Chen, Shun (Chen, Shun.) [8] | Chen, Cong (Chen, Cong.) [9] | Du, Min (Du, Min.) [10] | Tong, Tong (Tong, Tong.) [11] (Scholars:童同) | Gao, Qinquan (Gao, Qinquan.) [12] (Scholars:高钦泉) | Zheng, Meijuan (Zheng, Meijuan.) [13]

Indexed by:

SCIE

Abstract:

Automated thyroid nodule classification in ultrasound images is an important way to detect thyroid nodules and to make a more accurate diagnosis. In this paper, we propose a novel deep convolutional neural network (CNN) model, called n-ClsNet, for thyroid nodule classification. Our model consists of a multi-scale classification layer, multiple skip blocks, and a hybrid atrous convolution (HAC) block. The multi-scale classification layer first obtains multi-scale feature maps in order to make full use of image features. After that, each skip-block propagates information at different scales to learn multi-scale features for image classification. Finally, the HAC block is used to replace the downpooling layer so that the spatial information can be fully learned. We have evaluated our n-ClsNet model on the TNUI-2021 dataset. The proposed n-ClsNet achieves an average accuracy (ACC) score of 93.8% in the thyroid nodule classification task, which outperforms several representative state-of-the-art classification methods.

Keyword:

deep convolutional neural network densely connection hybrid atrous convolution multi-scale the thyroid nodule classification

Community:

  • [ 1 ] [Wang, Luoyan]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 2 ] [Zhou, Xiaogen]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 3 ] [Nie, Xingqing]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 4 ] [Lin, Xingtao]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 5 ] [Li, Jing]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 6 ] [Zheng, Haonan]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 7 ] [Du, Min]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 8 ] [Tong, Tong]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 9 ] [Gao, Qinquan]Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou, Peoples R China
  • [ 10 ] [Wang, Luoyan]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 11 ] [Zhou, Xiaogen]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 12 ] [Nie, Xingqing]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 13 ] [Lin, Xingtao]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 14 ] [Li, Jing]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 15 ] [Zheng, Haonan]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 16 ] [Du, Min]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 17 ] [Tong, Tong]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 18 ] [Gao, Qinquan]Fuzhou Univ, Fujian Key Lab Med Instrumentat & Pharmaceut Techn, Fuzhou, Peoples R China
  • [ 19 ] [Xue, Ensheng]Fujian Med Univ, Union Hosp, Fuzhou, Peoples R China
  • [ 20 ] [Chen, Shun]Fujian Med Univ, Union Hosp, Fuzhou, Peoples R China
  • [ 21 ] [Chen, Cong]Fujian Med Univ, Union Hosp, Fuzhou, Peoples R China
  • [ 22 ] [Zheng, Meijuan]Fujian Med Univ, Union Hosp, Fuzhou, Peoples R China
  • [ 23 ] [Xue, Ensheng]Fujian Med Ultrasound Res Inst, Fuzhou, Peoples R China

Reprint 's Address:

Show more details

Related Keywords:

Related Article:

Source :

FRONTIERS IN NEUROSCIENCE

ISSN: 1662-4548

Year: 2022

Volume: 16

4 . 3

JCR@2022

3 . 2 0 0

JCR@2023

ESI HC Threshold:52

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 3

SCOPUS Cited Count: 6

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Online/Total:51/10057508
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1