Indexed by:
Abstract:
Automated thyroid nodule classification in ultrasound images is an important way to detect thyroid nodules and to make a more accurate diagnosis. In this paper, we propose a novel deep convolutional neural network (CNN) model, called n-ClsNet, for thyroid nodule classification. Our model consists of a multi-scale classification layer, multiple skip blocks, and a hybrid atrous convolution (HAC) block. The multi-scale classification layer first obtains multi-scale feature maps in order to make full use of image features. After that, each skip-block propagates information at different scales to learn multi-scale features for image classification. Finally, the HAC block is used to replace the downpooling layer so that the spatial information can be fully learned. We have evaluated our n-ClsNet model on the TNUI-2021 dataset. The proposed n-ClsNet achieves an average accuracy (ACC) score of 93.8% in the thyroid nodule classification task, which outperforms several representative state-of-the-art classification methods.
Keyword:
Reprint 's Address:
Email:
Source :
FRONTIERS IN NEUROSCIENCE
ISSN: 1662-4548
Year: 2022
Volume: 16
4 . 3
JCR@2022
3 . 2 0 0
JCR@2023
ESI HC Threshold:52
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: