Indexed by:
Abstract:
Radiocesium remediation is of great significance for the sustainable development of nuclear energy and ecological protection. It is very challenging for the effective recovery of 137Cs from aqueous solutions due to its strong radioactivity, solubility and mobility. Herein, the efficient recovery of Cs+ ions has been achieved by three layered vanadyl oxalatophosphates, namely (NH4)2[(VO)2(HPO4)2C2O4]center dot 5 H2O (NVPC), Na2[(VO)2(HPO4)2C2O4]center dot 2 H2O (SVPC), and K2.5[(VO)2(HPO4)1.5(PO4)0.5(C2O4)]center dot 4.5 H2O (KVPC). NVPC exhibits the ultra-fast kinetics (within 5 min) and high adsorption capacity for Cs+ (qmCs = 471.58 mg/g). It also holds broad pH durability and excellent radiation stability. Impressively, the entry of Cs+ can be directly visualized by the single-crystal structural analysis, and thus the underlying mechanism of Cs+ capture by NVPC from aqueous solutions has been illuminated at the molecular level. This is a pioneering work in the removal of radioactive ions by metal oxalatophosphate materials which highlights the great potential of metal oxalatophosphates for radionuclide remediation.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF HAZARDOUS MATERIALS
ISSN: 0304-3894
Year: 2022
Volume: 434
1 3 . 6
JCR@2022
1 2 . 2 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 13
SCOPUS Cited Count: 14
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: