Indexed by:
Abstract:
Metal skeletons, such as Nickel Foam (NF) has attracted worldwide interests as stable host for lithium metal anode because of its high stability, large specific surface area and high conductivity. However, most metal skeletons have lithophobic surface and uneven current distribution that result in sporadic lithium nucleation and uncontrolled dendrites growth. Herein, we describe a sequential immersing strategy to generate interwoven Nickel(II)-dimethylglyoxime (Ni-DMG) nanowires at NF to obtain composite skeleton (NDNF), which can be used as an stable host for Li metal storage. The Ni-DMG has proved effective to realize uniform lithium nucleation and dendrite-free lithium deposition. Combing with the three dimensional (3D) hierarchical porous structure, the composite host shows a significantly improved coulombic efficiency (CE) than pristine commercial nickel foam. Moreover, the corresponding Li parallel to Li symmetrical cells can run more than 700 h with low voltage hysteresis 22 mV at 1.0 mA/cm(2), and Li@NDNF parallel to LiFePO 4 full-cell exhibits a high capacity retention of 82.03% at 1.0 C during 630 cycles. These results proved the effectiveness of metal-organic complexes in governing Li metal growth and can be employed as a new strategy for dendrite-free Li metal anode and safe Li metal batteries (LMBs). (c) 2022 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
Keyword:
Reprint 's Address:
Source :
CHINESE CHEMICAL LETTERS
ISSN: 1001-8417
CN: 11-2710/O6
Year: 2022
Issue: 4
Volume: 33
Page: 2165-2170
9 . 1
JCR@2022
9 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 17
SCOPUS Cited Count: 17
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: