Indexed by:
Abstract:
In both organic and polymer synthesis, photochemistry of charge transfer complexes (CTCs) is considered as a powerful approach to expand visible-light-driven radical chemistry reaction. One reports herein on the development of a class of useful CTCs using pyridinium salts as efficient electron acceptors (combined with N, N, 3,5-tetramethylaniline, TMA) to achieve a multiwavelength (375-560 nm) metal-free LED photopolymerization process under mild conditions (open to air, without monomer purification and inhibitor removal). The UV-vis absorption spectra and molecular modeling simultaneously verify its potential blue-green absorbing wavelength range. Also, their good thermal initiation behavior at relatively low temperatures makes it easier to achieve thick samples and/or polymerization in the shadow region in practice. More importantly, with excellent photoinitiating capability, the formulation is successfully applied to direct laser write (DLW) and high-resolution 3D printing, yielding a series of objects with well-defined structures, such as letters, ring, solid squares, and chess pieces. These new pyridinium salt acceptors further extend the applicability to visible photopolymerizable resins and additive-containing formulations for efficient surface and deep curing.
Keyword:
Reprint 's Address:
Version:
Source :
MACROMOLECULAR RAPID COMMUNICATIONS
ISSN: 1022-1336
Year: 2022
Issue: 19
Volume: 43
4 . 6
JCR@2022
4 . 2 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: