Indexed by:
Abstract:
ABSTRACT: Energy level engineering is a powerful technique to tune the electron transport and the photocatalytic properties of photocatalysts with low-valence Sn2+ and high-valence Cu2+ selfcodoping by solvothermal method. The band gap energy level and Fermi level of Cu2ZnSnS4 nanosheets can be adjusted by controlling Sn2+ and Cu2+ self-codoping at different solvothermal temperature. This leads to semiconductor behavior change from p-type of the intrinsic Cu2ZnSnS4 to the n-type of self-codoped sample. The n-type Cu2ZnSnS4 nanosheets exhibit a good CO2 photoreduction performance to yield 48.14 and 25.04 mu mol g-1 h-1 of CO and CH4, where CO yields on n-type Cu2ZnSnS4 is about 4 times higher than that on the intrinsic Cu2ZnSnS4. This work offers a versatile approach of different valence metal ion self-codoping to engineer the energy level of multimetal semiconductor photocatalyst.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS SUSTAINABLE CHEMISTRY & ENGINEERING
ISSN: 2168-0485
Year: 2022
Issue: 27
Volume: 10
Page: 8825-8834
8 . 4
JCR@2022
7 . 1 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 14
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6