Indexed by:
Abstract:
Increasing voltage levels and realizing power-line communications are important parts of a smart grid, and because of this, the need for intelligent, digital, and multi-functional electronic sensors that can simultaneously perform the functions of high-voltage monitoring and carrier-signal demodulation in a power transmission system is urgent. Inspired by the operation mode of light-emitting diodes (LEDs) driven by triboelectric-nanogenerators (TENGs), we propose an electrode-LED-electrode structure, namely, LED-in-capacitors (LIC), for high-voltage monitoring and high-frequency signal demodulation. We demonstrate that the proposed LIC can sensitively extract the high-voltage amplitude and detect the harmonic pollution on a power line due to the LIC's being highly sensitive to the rate of change of the electric potential. We build a one-dimensional convolutional neural network that we use to identify successfully, with correct rate as high as 94.53%, the harmonic pollution. Additionally, by using the LIC, we are able to demodulate accurately the high-frequency carrier signals transferred in the high-voltage line, showing that the LIC has promise for potential applications in power-line communications. As a novel type of electronic device derived from TENG-related technology, we believe the LIC can provide impetus for the development of next-generation high-voltage technology. © 2022
Keyword:
Reprint 's Address:
Email:
Source :
Nano Energy
ISSN: 2211-2855
Year: 2022
Volume: 102
1 7 . 6
JCR@2022
1 6 . 8 0 0
JCR@2023
ESI HC Threshold:91
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: