Indexed by:
Abstract:
针对目前的视频播放速度识别算法大多存在的提取精度差、模型参数量巨大的问题,提出了一种双支轻量化视频播放速度识别网络.首先,该网络是基于SlowFast双支网络架构组建的一个三维(3D)卷积网络;其次,为了弥补S3D-G网络在视频播放速度识别任务中存在的参数量大、浮点运算数多的缺陷,进行了轻量化的网络结构调整;最后,在网络结构中引入了高效通道注意力(ECA)模块,以通过通道注意力模块生成重点关注的内容对应的通道范围,这有助于提高视频特征提取的准确性.在Kinetics-400数据集上将所提网络与S3D-G、SlowFast网络进行对比实验.实验结果表明,所提网络在精确度差不多的情况下,模型大小和模型参数均比SlowFast减少了大约96%,浮点运算数减少到5.36 GFLOPs,显著提高了运行速度.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机应用
ISSN: 1001-9081
Year: 2022
Issue: 7
Volume: 42
Page: 2043-2051
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: