Indexed by:
Abstract:
In this article, a fault-tolerant model-free predictive controller (FT-MFPC) for cascaded H-bridge multilevel inverters (CHMLIs) is proposed. FT-MFPC is based on an association of model-free predictive controller (MFPC) and a proportional-integral (PI) like structure known as current variation controller (CVC). As in MFPC, the dynamic structure (DS) that is used for the prediction of the system output is obtained from past measurements of current variations, but CVC modifies the dynamics before they are stored for prediction. As a consequence, even if the converter operates with bypassed modules, FT-MFPC adapts its DS to represent the real dynamics of the system and enables a closed-loop response with balanced load currents in unbalanced CHMLIs. Simulation and experimental results validate the adaptability of the proposed strategy to operate a seven-level inverter under various configurations of bypassed H-bridge modules. The experimental results show that, for different postfault operations, the maximal current total harmonic distortion and imbalance factor at steady state in the worst case scenario are below 5% and 2%, respectively.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
ISSN: 0278-0046
Year: 2022
Issue: 12
Volume: 69
Page: 12225-12236
7 . 7
JCR@2022
7 . 5 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: