Indexed by:
Abstract:
This paper addresses the problem of minimizing the maximum lateness and the total pollution emission costs by scheduling a group of jobs with different processing times, sizes, release times, and due dates on uniform parallel batch processing machines with non-identical machine capacities and different unit pollution emission costs. We develop a discrete bi-objective evolutionary algorithm C-NSGA-A to solve this problem. On the one hand, we present a method of constructively generating an individual with the first job selection to produce an initial population for improving the convergence of individuals. On the other hand, we propose an angle-based environmental selection strategy to choose individuals to maintain the diversity of individuals. Through extensive simulation experiments, C-NSGA-A is compared with several state-of-the-art algorithms, and experimental results show that the proposed algorithm performs better than those algorithms. Moreover, the proposed algorithm has more obvious advantages on instances with a larger number of jobs. © 2022 Elsevier Ltd
Keyword:
Reprint 's Address:
Email:
Source :
Expert Systems with Applications
ISSN: 0957-4174
Year: 2022
Volume: 204
8 . 5
JCR@2022
7 . 5 0 0
JCR@2023
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: