Indexed by:
Abstract:
Multifunctional flexible devices for human motion detection and thermal management raised great attention as the problem of the aging population is becoming more and more serious. However, it is still a challenge to endow the devices with excellent stability and wide application scope. Here we prepared a hydrophobic and conductive fabric-based strain sensor for smart fabric via successively coating with polydopamine (PDA), polyaniline (PANI), polypyrrole (PPy), and polydimethylsiloxane (PDMS) through in-situ polymerization and dip-coating, which could be used for strain sensor and wearable heater both in air and underwater. The obtained sample exhibited a fast electrical response in 500 ms and could withstand 10,000 times stretching-releasing cycles, additionally, the sample exhibited satisfactory electro-thermal and photo-thermal performances. As a whole, the multifunctional fabric-based devices with excellent performances show great potential to be applied in medical monitoring and personal care, especially for aged and disabled persons. © 2022
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Materials Science and Technology
ISSN: 1005-0302
Year: 2023
Volume: 138
Page: 108-116
1 1 . 2
JCR@2023
1 1 . 2 0 0
JCR@2023
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 35
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: