Indexed by:
Abstract:
为减少森林火灾带来的损害,通过文献回顾,对森林火险进行建模和预测预报。归纳基于机器学习方法的森林火险预测研究现状,并从森林火灾影响因子的选取、选择合适的火险预测模型以及模型检验方法3个主要方面进行分析阐述。结果表明:森林火险的主要影响因素包括可燃物特征、气象因子、地形、人类活动等;在森林火险预测模型中,反向传播(BP)神经网络方法需要改进后运用,支持向量机(SVM)方法对数据要求高,随机森林(RF)方法通用性强且精度较高,深度学习方法的研究较少,但精度都很高;模型常用的检验方法是准确度、受试者工作特征(ROC)曲线和曲线下的面积(AUC)值等。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
中国安全科学学报
ISSN: 1003-3033
CN: 11-2865/X
Year: 2022
Issue: 09
Volume: 32
Page: 152-157
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1