Indexed by:
Abstract:
One way to efficiently store, transport, and utilize hydrogen is to convert it into liquid ammonia (NH3). Exploring low-cost and high-efficiency electrocatalysts for liquid ammonia oxidation reaction (AOR) is critical in devel-oping hydrogen production fuel cells. Here, we have investigated the catalytic electro-oxidation of liquid ammonia on surfaces of transition metal dimer anchored in g-CN (TM2@g-CN) monolayer to derive insights into the reaction mechanism and evaluate the catalystic activity. Our results show that the mechanism proposed by Gerischer and Mauerer is kinetically preferred. Furthermore, Fe2, Co2, Ru2, Rh2, and Ir2 anchored in g-CN monolayer exhibit high AOR catalytic activity. In particular, Rh and Ir atoms exhibit excellent performance for hydrogen evolution reaction (HER), indicating that they can be used as the efficient bifunctional catalysts to-wards ammonia splitting for production H2. Remarkably, by regulating TM atoms with different d-electron numbers, the d-band center (epsilon d) of TM atoms on TM2@g-CN can be turned and utilized to predict AOR per-formance, which provides a theoretical guideline for the design of advanced AOR electrocatalysts.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED SURFACE SCIENCE
ISSN: 0169-4332
Year: 2023
Volume: 609
6 . 3
JCR@2023
6 . 3 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 10
SCOPUS Cited Count: 10
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0