Indexed by:
Abstract:
Due to their emission-free operation and high efficiency, photovoltaic cells (PVCs) have been one of the candidates for next-generation "green" power generators. However, PVCs require prolonged exposure to sunlight to work, resulting in elevated temperatures and worsened performances. To overcome this shortcoming, photovoltaic-thermal collector (PVT) systems are used to cool down PVCs, leaving the waste heat unrecovered. Fortunately, the development of thermoelectric generators (TEGs) provides a way to directly convert temperature gradients into electricity. The PVC-TEG hybrid system not only solves the problem of overheated solar cells but also improves the overall power output. In this review, we first discuss the basic principle of PVCs and TEGs, as well as the principle and basic configuration of the hybrid system. Then, the optimization of the hybrid system, including internal and external aspects, is elaborated. Furthermore, we compare the economic evaluation and power output of PVC and hybrid systems. Finally, a further outlook on the hybrid system is offered.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MOLECULES
ISSN: 1420-3049
Year: 2022
Issue: 21
Volume: 27
4 . 6
JCR@2022
4 . 2 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: