Indexed by:
Abstract:
Cu2O is one of the most promising photocatalysts for visible light driven CO2 conversion, but its practical application in artificial photosynthesis is challenged to severe photocorrosion. Herein, a Cu2O/LaTiO2N composite is successfully synthesized by loading Cu2O on LaTiO2N through an ascorbic acid reduction method, which significantly improves the stability and activity of Cu2O for visible light driven photocatalytic CO2 conversion, and shows higher photocatalytic performance than most Cu2O-based photocatalysts reported. The superior photocatalytic performance is attributed to the formation of type-II heterojunction between Cu2O and LaTiO2N, which facilitates the separation and transfer of photogenerated electrons and holes. This work provides an effective strategy for the construction of stable and efficient Cu2O-based photocatalysts. © 2022 Elsevier Inc.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Colloid and Interface Science
ISSN: 0021-9797
Year: 2023
Volume: 630
Page: 352-362
9 . 4
JCR@2023
9 . 4 0 0
JCR@2023
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 14
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: