• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

郭金泉 (郭金泉.) [1] | 吴欣然 (吴欣然.) [2] | 钟建华 (钟建华.) [3]

Indexed by:

PKU

Abstract:

针对滚动轴承故障冲击成分易淹没在强噪声中这一问题,提出了一种自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和粒子群优化的多点最优最小熵解卷积(partical swarm optimized multipoint optimal minimum entropy decon-volution adjusted,PSO-MOMEDA)相结合的故障诊断方法.由于MOMEDA的重要影响参数故障周期搜索范围T和滤波器长度L依赖人为经验选择,采用粒子群优化算法对这两个参数进行寻优.首先,采用CEEMDAN分解信号,依据峭度-相关系数准则筛选最优分量;其次,使用PSO对MOME-DA进行参数寻优,对最优分量使用MOMEDA进行滤波处理;最后,对滤波后的信号做包络谱分析,提取故障特征信息.通过仿真信号和实验信号分析表明,与单独使用CEEMDAN算法,将MOME-DA方法替换成MCKD方法相比较,该方法能够有效增强噪声中的故障冲击成分,准确提取轴承故障特征频率,准确诊断轴承故障.

Keyword:

CEEMDAN MOMEDA PSO 故障诊断 滚动轴承

Community:

  • [ 1 ] [吴欣然]福州大学
  • [ 2 ] [郭金泉]福州大学机械工程及自动化学院,福州 350108;福建省力值计量测试重点实验室,福州350100
  • [ 3 ] [钟建华]福州大学

Reprint 's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

组合机床与自动化加工技术

ISSN: 1001-2265

Year: 2022

Issue: 10

Page: 164-168

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count: -1

Chinese Cited Count:

30 Days PV: 2

Online/Total:200/10039378
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1