Indexed by:
Abstract:
d-Allulose is a rare hexose with great application potential, owing to its moderate sweetness, low energy, and unique physiological functions. The current strategies for d-allulose production, whether industrialized or under development, utilize six-carbon sugars such as d-glucose or d-fructose as a substrate and are usually based on the principle of reversible Izumoring epimerization. In this work, we designed a novel route that coupled the pathways of methanol reduction, pentose phosphate (PP), ribulose monophosphate (RuMP), and allulose monophosphate (AuMP) for Escherichia coli to irreversibly synthesize d-allulose from d-xylose and methanol. After improving the expression of AlsE by SUMO fusion and regulating the carbon fluxes by knockout of FrmRAB, RpiA, PfkA, and PfkB, the titer of d-allulose in fed-batch fermentation reached ≈70.7 mM, with a yield of ≈0.471 mM/mM on d-xylose or ≈0.512 mM/mM on methanol. © 2022 American Chemical Society. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Agricultural and Food Chemistry
ISSN: 0021-8561
Year: 2022
Issue: 44
Volume: 70
Page: 14255-14263
6 . 1
JCR@2022
5 . 7 0 0
JCR@2023
ESI HC Threshold:48
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: