Indexed by:
Abstract:
Advanced oxidation processes (AOPs) are reckoned effective for removing persistent and recalcitrant pollutants by reactive oxygen species (ROSs), including hydroxyl radicals (•OH), sulfate radicals (SO4•-), and superoxide radicals (•O2-), as well as singlet oxygen (1O2). In this work, the Mo2C quantum dots enriched N-doped graphitic carbon layers (Mo2C QDs/NGCLs) were constructed via a facile two-step methodology. Interestingly, the Mo2C QDs/NGCLs acted as a highly efficient cocatalyst and/or catalyst simultaneously in AOPs, in particular visible-light-driven (VLD) Fenton and VLD PMS activation. In the hydroxyl radical-based AOPs (•OH-AOPs), it exhibited a remarkable removal efficiency for a range of aromatic organic pollutants, including rhodamine B (RhB) (99.9 %), phenol (90 %), benzophenone-3 (BZP) (83 %), methyl orange (MO) (58 %), methyl blue (MB) (89 %), ibuprofen (IBU) (100 %), and carbamazepine (CBZ) (50 %). Sulfate radicals-based AOPs (SR-AOPs) effectively degrade RhB (72 %), MO (83 %), IBU (70 %), and BZP (100 %). Thus, the present findings confirmed the potential of transition metal carbides for AOP applications and established a solid theoretical and technical basis for further research. © 2022 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Applied Catalysis A: General
ISSN: 0926-860X
Year: 2023
Volume: 649
4 . 7
JCR@2023
4 . 7 0 0
JCR@2023
ESI HC Threshold:39
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: