Indexed by:
Abstract:
针对多目标检测主流方法仅能表示目标间像素距离,未能真正表示目标间真实距离的问题,提出融合深度信息的多层次图关系网络的多目标检测方法,以多尺度候选框为节点构建多尺度图关系网络,节点间的关系不仅融合像素距离还增加了目标的深度信息.相比主流方法在像素层构建单一图网络,该模型可以均衡不同远近和大小的目标,更能体现目标间真实关系,从而提升图像多目标检测效果.实验结果显示:在"识别佩戴手套"数据集上,本文方法的mAP50指标比YOLOv3和YOLOX均提升了5%;在大规模数据集Visual Genome上,本文方法比传统方法检测效果提升了约10%.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
中国科技论文
ISSN: 2095-2783
CN: 10-1033/N
Year: 2022
Issue: 11
Volume: 17
Page: 1194-1200
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: