Abstract:
在许多数据挖掘的实际应用中要求每一个类别的实例数量相对平衡.而独立子空间聚类的熵加权K-means算法(EWKM)会产生不均衡的划分,聚类质量很差.本文定义了一种兼顾平衡划分与特征分布的多目标熵,然后应用该熵改进了EWKM算法的目标函数,同利用迭代方法和交替方向乘子法设计其求解流程,并提出基于熵的平衡子空间K-means算法(EBSKM).最后,在UCI、UCR等公开数据集进行聚类实验,结果表明所提算法在准确率和平衡性方面都优于同类算法.
Keyword:
Reprint 's Address:
Email:
Source :
计算机系统应用
ISSN: 1003-3254
CN: 11-2854/TP
Year: 2022
Issue: 12
Volume: 31
Page: 266-272
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: