Indexed by:
Abstract:
Single image desnowing is an important and challenge task for lots of computer vision applications, such as visual tracking and video surveillance. Although existing deep learning-based methods have achieved promising results, most of them rely on the local deep features and neglect global relationship information between the local regions. Therefore, inevitably leading to over-smooth or detail loss results. To solve this issue, we design a UNet-based end-to-end architecture for image desnowing. Specially, to better characterize global information and preserve image detail, we combine Window-based Self-Attention (WSA) transformer block with Residue Spatial Attention (RSA) to build basic unit of our network. Besides, to protect the structure of the image effectively, we also introduce a Residue Channel (RC) loss to guide high-quality image restoration. Extensive experimental results on both synthetic and real-world datasets demonstrate that the proposed model achieves new state-of-the-art results.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
2022 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP)
ISSN: 2642-9357
Year: 2022
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: