Indexed by:
Abstract:
The asymmetrical group III-VI monolayer Janus M2XY (M = Al, Ga, In; X not equal Y = S, Se, Te) have attracted widespread attention due to their significant optical absorption properties, which are the potential building blocks for van der Waals (vdW) heterostructure solar cells. In this study, we unraveled an In2STe/GeH vdW heterostructure as a candidate for solar cells by screening the Janus M2XY and GeH monolayers on lattice mismatches and electronic band structures based on first-principles calculations. The results highlight that the In2STe/GeH vdW heterostructure exhibits a type-II band gap of 1.25 eV. The optical absorption curve of the In2STe/GeH vdW heterostructure indicates that it possesses significant optical absorption properties in the visible and ultraviolet light areas. In addition, we demonstrate that the In2STe/GeH vdW heterostructure shows high and directionally anisotropic carrier mobility and good stability. Furthermore, strain engineering improves the theoretical power conversion efficiency of the In2STe/GeH vdW heterostructure up to 19.71%. Our present study will provide an idea for designing Janus M2XY and GeH monolayer-based vdW heterostructures for solar cell applications.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
ISSN: 1463-9076
Year: 2023
Issue: 9
Volume: 25
Page: 6674-6683
2 . 9
JCR@2023
2 . 9 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: