Indexed by:
Abstract:
Low-light image enhancement plays a central role in various downstream computer vision tasks. Vision Transformers (ViTs) have recently been adapted for low-level image processing and have achieved a promising performance. However, ViTs process images in a window- or patch-based manner, compromising their computational efficiency and long-range dependency. Additionally, existing ViTs process RGB images instead of RAW data from sensors, which is sub-optimal when it comes to utilizing the rich information from RAW data. We propose a fully end-to-end Conv-Transformer-based model, RawFormer, to directly utilize RAW data for low-light image enhancement. RawFormer has a structure similar to that of U-Net, but it is integrated with a thoughtfully designed Conv-Transformer Fusing (CTF) block. The CTF block combines local attention and transposed self-attention mechanisms in one module and reduces the computational overhead by adopting a transposed self-attention operation. Experiments demonstrate that RawFormer outperforms state-of-the-art models by a significant margin on low-light RAW image enhancement tasks.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE SIGNAL PROCESSING LETTERS
ISSN: 1070-9908
Year: 2022
Volume: 29
Page: 2677-2681
3 . 9
JCR@2022
3 . 2 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:66
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: