Indexed by:
Abstract:
Layered double hydroxide (LDH) catalysts provide promising OER activity which can be employed in overall water splitting for hydrogen production. However, their weak surface hydrogen adsorption (H-ad) and high water dissociation energy can result in the inferior hydrogen evolution reactions (HER) activity. In this paper, a highly efficient HER catalyst of F-doped NiCoMo LDH is successfully designed and synthesized through in situ growing on nickel foam (F-NiCoMo LDH/NF) for overall water splitting. DFT calculations demonstrate that the introduction of Mo and F atoms in NiCo LDH can induce the generation of anisotropic lattice strain, resulting in the generation of high-energy active interface and shifting the d-band centers. Therefore, the adsorption energy of H-ad is optimized and the water dissociation energy barrier is decreased. As a result, this F-NiCoMo LDH/NF catalyst electrode displays a low overpotential of 107.5 mV at 10 mA cm(-2) and a small Tafel slope of 67.2 mV dec(-1) for HER. The assembled electrolyzer by employing this catalyst electrode requires only 1.83 V to deliver 300 mA cm(-2) and operates stably for 100 h.
Keyword:
Reprint 's Address:
Version:
Source :
JOURNAL OF THE ELECTROCHEMICAL SOCIETY
ISSN: 0013-4651
Year: 2023
Issue: 3
Volume: 170
3 . 1
JCR@2023
3 . 1 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: