Indexed by:
Abstract:
Phonocardiogram (PCG) is commonly used as a diagnostic tool in ambulatory monitoring in order to evaluate cardiac abnormalities and detect cardiovascular diseases. Although cardiac auscultation is widely used for evaluation of cardiac function, the analysis of heart sound signals mostly depends on the clinician's experience and skills. There is growing demand for automatic and objective heart sound interpretation techniques. The objective of this study is to develop an automatic classification method for anomaly (binary and multi-class) detection of PCG recordings without any segmentation. A deep neural network (DNN) model is used on the raw data during the extraction of the features of the PCG inputs. Deep feature maps obtained from hierarchically placed layers in DNN are fed to various shallow classifiers for the anomaly detection, including support vector classifier (SVC), k-nearest neighbors (KNN), random forest (RF), gradient boosting (GB) classifier, decision tree (DT) classifier, quadratic discriminant analysis (QDA), and multi-layer perception (MLP). Principal component analysis (PCA) technique is used to reduce the high dimensions of feature maps.Finally, two famous heart sound databases, namely PhysioNet/Computing in Cardiology (CinC) Challenge heart sound database and heart valve disease (HVD) database, are used for evaluation. The databases are significantly different in terms of the tools used for data acquisition, clinical protocols, digital storages and signal qualities, making it challenging to process and analyze. By using the 10-fold cross-validation style, experimental results demonstrate that the proposed deep features with shallow classifiers yield highest performance with accuracy of 99.61% and 99.44% for binary and multi-class classification on the two databases, respectively. The results indicate that our method is effective for the detection of abnormal heart sound signals and outperforms other state-of-the-art methods.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MULTIMEDIA TOOLS AND APPLICATIONS
ISSN: 1380-7501
Year: 2023
Issue: 17
Volume: 82
Page: 26859-26883
3 . 0
JCR@2023
3 . 0 0 0
JCR@2023
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:32
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: