Indexed by:
Abstract:
Graph data have become increasingly important, and graph node clustering has emerged as a fundamental task in data analysis. In recent years, graph node clustering has gradually moved from traditional shallow methods to deep neural networks due to the powerful representation capabilities of deep learning. In this article, we review some representatives of the latest graph node clustering methods, which are classified into three categories depending on their principles. Extensive experiments are conducted on real-world graph datasets to evaluate the performance of these methods. Four mainstream evaluation performance metrics are used, including clustering accuracy, normalized mutual information, adjusted rand index, and F1-score. Based on the experimental results, several potential research challenges and directions in the field of deep graph node clustering are pointed out. This work is expected to facilitate researchers interested in this field to provide some insights and further promote the development of deep graph node clustering.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS
ISSN: 2329-924X
Year: 2023
Issue: 1
Volume: 11
Page: 1302-1314
4 . 5
JCR@2023
4 . 5 0 0
JCR@2023
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:32
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: