Indexed by:
Abstract:
The differences in the definition of urban areas lead to our contrasting or inconsistent understanding of global urban development and their corresponding socioeconomic and environmental impacts. The existing urban areas were widely identified by the boundaries of built-environment or social-connections, rather than urban entities that are essentially the spatial extents of human activity agglomerations. Thus, this study has attempted to map and evaluate global urban entities (2000-2020) from a perspective of an updated urban concept of urban entities based on the consistent remotely sensed nighttime light data. First, a K-means algorithm was developed to cluster urban and non-urban pixels automatically in consideration of global region division. Then, a post-processing was conducted to enhance the temporal and logical consistency of urban entities during the study period. Rationality assessment indicates that urban entities derived from remotely sensed nighttime light data more effectively reflect the spatial agglomeration extents of human activities than those of physical urban areas. Global urban entities increased from 157,733 km(2) in 2000 to 470,632 km(2) in 2020 accompanied by a differentiated urban expansion at global, continental, and national levels. Our study provides long-time series and fine-resolution datasets (500 m) and new research avenues for spatiotemporal analysis of global urban entity expansion with the improvement of the understanding of urbanization and the emergence of effective urban mapping theories and approaches.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
GISCIENCE & REMOTE SENSING
ISSN: 1548-1603
Year: 2023
Issue: 1
Volume: 60
6 . 0
JCR@2023
6 . 0 0 0
JCR@2023
ESI Discipline: GEOSCIENCES;
ESI HC Threshold:26
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 28
SCOPUS Cited Count: 29
ESI Highly Cited Papers on the List: 3 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: