• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Wu, Xuezhen (Wu, Xuezhen.) [1] | Zheng, Hanfang (Zheng, Hanfang.) [2] | Jiang, Yujing (Jiang, Yujing.) [3]

Indexed by:

EI

Abstract:

Many experiments have been performed to study the mechanical behavior of rock bolts in resisting the shear force. However, almost all the tests were conducted on smooth rock joints, which is inconsistent with the field engineering practice. In this paper, the shear behavior of fully encapsulated rock bolts and energy-absorbing rock bolts inserted in the rough joints was investigated with a series of single shear tests under constant normal load (CNL) conditions. For all specimens, when the value of JRC increases gradually, the value of peak shear stress increases gradually. The ultimate shear displacement of an energy-absorbing rock bolt is larger than that of a fully encapsulated rock bolt for the same JRC condition, and they all decrease with the increase of JRC. The sensitivity of the energy-absorbing bolt to JRC change is lower than a fully encapsulated rock bolt. A dimensionless mathematical model was established to predict the ultimate shear displacement of rock bolts inserted in different roughness conditions. The ultimate shear displacement of the rock bolt was evaluated as a linear function of JRC. Two tests with natural rough joints were conducted to verify the applicability of the proposed empirical model for the natural rough joints. The predicted values of the ultimate shear displacement of rock bolts indicated good agreement with the test results. The proposed model is capable of providing an accurate evaluation of the ultimate shear displacement of rock bolts inserted in rough joints. The results of the laboratory test and mathematical model all show that the energy-absorbing bolt can bear a larger shear displacement and adapt to different joint roughness. © 2022 Elsevier Ltd

Keyword:

Bolts Energy absorption Foundations Rock bolting Rock mechanics Rocks Shear stress

Community:

  • [ 1 ] [Wu, Xuezhen]College of Civil Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 2 ] [Zheng, Hanfang]College of Civil Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 3 ] [Jiang, Yujing]College of Civil Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 4 ] [Jiang, Yujing]School of Engineering, Nagasaki University, 1-14 Bunkyo, Nagasaki City; 852-8521, Japan

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

International Journal of Rock Mechanics and Mining Sciences

ISSN: 1365-1609

Year: 2023

Volume: 163

7 . 0

JCR@2023

7 . 0 0 0

JCR@2023

ESI HC Threshold:26

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 3

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:140/10064594
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1