Indexed by:
Abstract:
规则约减和规则激活是扩展置信规则库(EBRB)推理模型优化研究中的两个重要方向.然而,现有研究成果大多存在方法参数确定主观性强和计算复杂度高等不足.为此,通过引入聚类集成和激活因子提出改进的EBRB推理模型,称为CEAF-EBRB模型.该模型先基于聚类集成对历史数据进行多次的数据聚类分析,再以簇为单位将所有历史数据生成扩展置信规则;同时,通过激活因子修正个体匹配度计算公式以及离线的方式计算激活因子取值,以确保高效地激活一致性的规则.最后,在非线性函数拟合、模式识别、医疗诊断等常见问题中验证了所提CEAF-EBRB模型的可行性和有效性,从而为决策者提供更准确的决策支持.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
控制与决策
ISSN: 1001-0920
CN: 21-1124/TP
Year: 2023
Issue: 3
Volume: 38
Page: 815-824
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: