Indexed by:
Abstract:
The utilization of photoelectrochemical cathodic protection(PECCP)enables an indirect corrosion pro-tection of metals with low self-corrosion potential by introducing a metallic nickel interlayer.However,the ability to enhance the PECCP efficiency remains challenging because of the inherent property of the semiconductor.Herein,this ability is demonstrated by coupling a covalent organic framework(TpBD)dec-orated TiO2 photoanode(TiO2/TpBD)with nickel coating on magnesium alloy for an effective corrosion protection.The composite photoanode showed direct PECCP for the nickel interlayer and indirect corro-sion protection of the magnesium alloy.The composite structure of the nanotube array and the covalent organic framework for the photoanode were confirmed by field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).The en-hanced photoelectrochemical conversion capability and PECCP performance of the nickel-coated Mg alloy were evidenced by the results from electrochemical and photoelectrochemical measurements including Mott-Schottky curves,photoinduced potential variations,and electrochemical impedance spectroscopy(EIS).Lastly,a corrosion protection mechanism is proposed,where the enhanced PECCP efficiency is at-tributed to the formation of a direct Z-scheme heterojunction,which is substantiated by the results from valence band(VB)XPS and electron spin resonance characterizations.
Keyword:
Reprint 's Address:
Email:
Source :
材料科学技术(英文版)
ISSN: 1005-0302
CN: 21-1315/TG
Year: 2022
Issue: 31
Volume: 126
Page: 252-265
1 0 . 9
JCR@2022
1 1 . 2 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:91
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: