Indexed by:
Abstract:
The integration of electrochemical CO2 reduction (CO2RR) and photoelectrochemical water oxidation offers a sustainable access to valuable chemicals and fuels. Here, we develop a rapidly annealed hematite photoanode with a photocurrent density of 2.83 mA cm−2 at 1.7 VRHE to drive the full-reaction. We also present Cu-alloys electrocatalysis extended from CuInSnS4, which are superior in both activity and selectivity for CO2RR. Specifically, the screened CuInSn achieves a CO2 to HCOOH Faradaic efficiency of 93% at a cell voltage of −2.0 V by assembling into artificial photosynthesis cell. The stability test of IT exhibits less than 3% degradation over 24 h. Furthermore, in-situ Raman spectroscopy reveals that both CO32- and CO2 are involved in CO2RR as reactants. The preferential affinity of C for H in the *HCO2 intermediate enables an improved HCOOH-selectivity, highlighting the role of multifunctional Cu in reducing the cell voltage and enhancing the photocurrent density. © 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Energy Chemistry
ISSN: 2095-4956
Year: 2023
Volume: 79
Page: 601-610
1 4 . 0
JCR@2023
1 4 . 0 0 0
JCR@2023
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: