• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhao, Mincai (Zhao, Mincai.) [1] | Tan, Pengcheng (Tan, Pengcheng.) [2] | Cai, Daoping (Cai, Daoping.) [3] | Liu, Yangjie (Liu, Yangjie.) [4] | Zhang, Chaoqi (Zhang, Chaoqi.) [5] | Fei, Ban (Fei, Ban.) [6] | Sa, Baisheng (Sa, Baisheng.) [7] | Chen, Qidi (Chen, Qidi.) [8] | Zhan, Hongbing (Zhan, Hongbing.) [9]

Indexed by:

EI

Abstract:

Lithium–sulfur (Li–S) batteries hold great promise for the next-generation energy storage system. However, their commercial applications are severely hindered by myriads of drawbacks such as poor electrical conductivity of sulfur, sluggish redox reaction kinetics of sulfur species, 'shuttling effect' of soluble lithium polysulfides (LiPSs) and uncontrollable dendritic Li growth. Herein, it is conceptually demonstrated that sluggish conversion kinetics of LiPSs is markedly stimulated by exquisite heterointerface modulation at nanoscale level over transition metal carbides and nitrides. In this scenario, N-doped carbon coupled with molybdenum nitride/carbide (Mo2N-MoC/NC) hybrid nanocomposites are designed through a one-step carbonization-nitridation process, wherein component regulation induced dense heterointerfaces are in situ produced. Benefiting from high electrical conductivity, strong chemical adsorption, and superior catalytic activity afforded by dense heterointerfaces, the Mo2N-MoC/NC modified separators significantly restrict the soluble LiPSs shuttling and simultaneously suppress the Li dendrite generation. The assembled Li–S batteries with Mo2N-MoC/NC modified separators exhibit remarkable electrochemical performance. Integrated experimental and theoretical results substantiate the boosted chemisorption and catalytic conversion of LiPSs endowed by such dense heterointerfaces. The work will open a new vista for rationally constructing multifarious heterostructured materials for the communities of Li-S batteries. © 2022 Wiley-VCH GmbH.

Keyword:

Aluminum nitride Carbides Carbonization Carbon nanofibers Catalyst activity Doping (additives) Growth kinetics Lithium compounds Lithium-ion batteries Lithium sulfur batteries Molybdenum compounds Nitrides Polysulfides Reaction kinetics Redox reactions Separators Sulfur compounds Transition metals

Community:

  • [ 1 ] [Zhao, Mincai]College of Materials Science and Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 2 ] [Tan, Pengcheng]College of Materials Science and Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 3 ] [Cai, Daoping]College of Materials Science and Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 4 ] [Liu, Yangjie]College of Materials Science and Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 5 ] [Zhang, Chaoqi]Catalonia Institute for Energy Research−IREC, Sant Adrià de Besòs, Barcelona; 08930, Spain
  • [ 6 ] [Zhang, Chaoqi]Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Barcelona; 08028, Spain
  • [ 7 ] [Fei, Ban]College of Materials Science and Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 8 ] [Fei, Ban]School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
  • [ 9 ] [Sa, Baisheng]College of Materials Science and Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 10 ] [Chen, Qidi]College of Materials Science and Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 11 ] [Zhan, Hongbing]College of Materials Science and Engineering, Fuzhou University, Fuzhou; 350108, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Advanced Functional Materials

ISSN: 1616-301X

Year: 2023

Issue: 8

Volume: 33

1 8 . 5

JCR@2023

1 8 . 5 0 0

JCR@2023

ESI HC Threshold:49

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 34

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:156/10019489
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1