Indexed by:
Abstract:
Currently, the investigation of two-dimensional (2D) crystalline materials, notably transition metal tungsten-based sulfides, is scarcely reported in the wide-temperature field. Thus, tungsten sulphide encapsulated in a sulphurized polyacrylonitrile composite (WS2-SPAN) was prepared using an electrospinning technology combined with a sulphuration process. By virtue of the abundant S vacancies and in situ N doping, the WS2-SPAN composite shows an impressively ultralong lifespan and stable circulation capacity over a wide temperature range (−15-50 °C). For sodium storage, the WS2-SPAN-2 composite delivers optimized high-rate performance and ultrastable cycling properties (464 mA h g−1/450 cycles at 0.5 A g−1; 354 mA h g−1/1400 cycles at 2 A g−1, 190 mA h g−1/12 000 cycles at 5 A g−1; 129 mA h g−1/18 000 cycles at 10 A g−1, surpassing previously reported WS2-based anodes for SIBs). This is paired with an Na3V2(PO4)3 cathode, which exhibits excellent storage capacity (241 mA h g−1/200 cycles at 0.5 A g−1). Potassium storage also demonstrates admirable performance (362 mA h g−1/100 cycles at 0.1 A g−1; 278 mA h g−1/3000 cycles at 1 A g−1). In addition, a detailed illustration of the electrochemical storage mechanism of WS2-SPAN composites is presented through theoretical calculations and electrochemical dynamics. Thus, the present investigation provides new insights into the preparation of novel WS2-based anodes for sodium/potassium-ion batteries with ultralong lifespans and wide-temperature workability. © 2023 The Royal Society of Chemistry.
Keyword:
Reprint 's Address:
Email:
Source :
Inorganic Chemistry Frontiers
Year: 2023
Issue: 4
Volume: 10
Page: 1187-1196
6 . 1
JCR@2023
6 . 1 0 0
JCR@2023
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: