Indexed by:
Abstract:
Organic field-effect transistors with parallel transmission and learning functions are of interest in the development of brain-inspired neuromorphic computing. However, the poor performance and high power consumption are the two main issues limiting their practical applications. Herein, an ultralow-power vertical transistor is demonstrated based on transition-metal carbides/nitrides (MXene) and organic single crystal. The transistor exhibits a high JON of 16.6 mA cm−2 and a high JON/JOFF ratio of 9.12 × 105 under an ultralow working voltage of −1 mV. Furthermore, it can successfully simulate the functions of biological synapse under electrical modulation along with consuming only 8.7 aJ of power per spike. It also permits multilevel information decoding modes with a significant gap between the readable time of professionals and nonprofessionals, producing a high signal-to-noise ratio up to 114.15 dB. This work encourages the use of vertical transistors and organic single crystal in decoding information and advances the development of low-power neuromorphic systems. © 2022 Wiley-VCH GmbH.
Keyword:
Reprint 's Address:
Email:
Source :
Advanced Materials
ISSN: 0935-9648
Year: 2023
Issue: 3
Volume: 35
2 7 . 4
JCR@2023
2 7 . 4 0 0
JCR@2023
ESI HC Threshold:49
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count: 27
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: