Indexed by:
Abstract:
Diffusion dialysis (DD) has high economic competitiveness for acid recovery; however, the fabrication of highly acid-permeable and salt-rejecting anion exchange membranes (AEMs) for DD is still a grand challenge. This paper presents in-situ cross-linked porous AEMs with tunable microstructures and high DD performance. The AEMs were fabricated based on chloromethyl polyethersulfone substrate using N, N, N ', N '', N ''-pentamethyldiethylenetriamine as a bifunctional agent for cross-linking and quaternization. The prepared porous AEMs showed significantly superior DD performance over conventional dense AEMs due to the high free volume and cross-linked networks within our membranes. The acid dialysis coefficient (UH+) and acid/salt separation factor (S) of the optimal AEM were 2.6 and 255.4 times as high as those of the commercial DF-120 AEM, respectively. Therefore, our low-cost, high-performance in-situ cross-linked porous AEMs may pave the way for large-scale acid recovery applications.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF MEMBRANE SCIENCE
ISSN: 0376-7388
Year: 2023
Volume: 673
8 . 4
JCR@2023
8 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0