• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Liu, Yangjie (Liu, Yangjie.) [1] | Qiu, Min (Qiu, Min.) [2] | Hu, Xiang (Hu, Xiang.) [3] | Yuan, Jun (Yuan, Jun.) [4] | Liao, Weilu (Liao, Weilu.) [5] | Sheng, Liangmei (Sheng, Liangmei.) [6] | Chen, Yuhua (Chen, Yuhua.) [7] | Wu, Yongmin (Wu, Yongmin.) [8] | Zhan, Hongbing (Zhan, Hongbing.) [9] | Wen, Zhenhai (Wen, Zhenhai.) [10]

Indexed by:

EI CSCD

Abstract:

Highlights: We developed an efficient and extensible strategy to produce the single-phase ternary NbSSe nanohybrids with defect-enrich microstructure.The anionic-Se doping play a key role in effectively modulating the electronic structure and surface chemistry of NbS2 phase, including the increased interlayers distance (0.65 nm), the enhanced intrinsic electrical conductivity (3.23 × 103 S m-1) and extra electroactive defect sites.The NbSSe/NC composite as anode exhibits rapid Na+ diffusion kinetics and increased capacitance behavior for Na+ storage, resulting in high reversible capacity and excellent cycling stability. Abstract: Sodium-based dual-ion batteries (SDIBs) have gained tremendous attention due to their virtues of high operating voltage and low cost, yet it remains a tough challenge for the development of ideal anode material of SDIBs featuring with high kinetics and long durability. Herein, we report the design and fabrication of N-doped carbon film-modified niobium sulfur–selenium (NbSSe/NC) nanosheets architecture, which holds favorable merits for Na+ storage of enlarged interlayer space, improved electrical conductivity, as well as enhanced reaction reversibility, endowing it with high capacity, high-rate capability and high cycling stability. The combined electrochemical studies with density functional theory calculation reveal that the enriched defects in such nanosheets architecture can benefit for facilitating charge transfer and Na+ adsorption to speed the electrochemical kinetics. The NbSSe/NC composites are studied as the anode of a full SDIBs by pairing the expanded graphite as cathode, which shows an impressively cyclic durability with negligible capacity attenuation over 1000 cycles at 0.5 A g−1, as well as an outstanding energy density of 230.6 Wh kg−1 based on the total mass of anode and cathode.[Figure not available: see fulltext.] © 2023, The Author(s).

Keyword:

Activation energy Anodes Architecture Carbon films Cathodes Charge transfer Density functional theory Electric conductivity Electronic structure Energy storage Ions Kinetics Nanosheets Selenium compounds Semiconductor doping Storage (materials) Sulfur compounds Surface chemistry

Community:

  • [ 1 ] [Liu, Yangjie]College of Materials Science and Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 2 ] [Liu, Yangjie]CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou; 350002, China
  • [ 3 ] [Qiu, Min]CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou; 350002, China
  • [ 4 ] [Qiu, Min]Fujian Normal University, Fuzhou; 350108, China
  • [ 5 ] [Hu, Xiang]College of Materials Science and Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 6 ] [Hu, Xiang]CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou; 350002, China
  • [ 7 ] [Yuan, Jun]College of Materials Science and Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 8 ] [Yuan, Jun]CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou; 350002, China
  • [ 9 ] [Liao, Weilu]CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou; 350002, China
  • [ 10 ] [Sheng, Liangmei]State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power Sources, 2965 Dongchuan Road, Shanghai; 200245, China
  • [ 11 ] [Chen, Yuhua]State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power Sources, 2965 Dongchuan Road, Shanghai; 200245, China
  • [ 12 ] [Wu, Yongmin]State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power Sources, 2965 Dongchuan Road, Shanghai; 200245, China
  • [ 13 ] [Zhan, Hongbing]College of Materials Science and Engineering, Fuzhou University, Fuzhou; 350108, China
  • [ 14 ] [Wen, Zhenhai]CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou; 350002, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Nano-Micro Letters

ISSN: 2311-6706

Year: 2023

Issue: 1

Volume: 15

3 1 . 6

JCR@2023

3 1 . 6 0 0

JCR@2023

ESI HC Threshold:49

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:361/10855782
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1