• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

付建广 (付建广.) [1] | 尤斌 (尤斌.) [2] | 林毅 (林毅.) [3] | 陈德旺 (陈德旺.) [4]

Indexed by:

PKU

Abstract:

为了提高地铁客流量预测的准确性,基于传统的PSO(粒子群优化)算法与BLS (宽度学习系统),提出一种新的地铁客流预测模型,即PSO-BLS算法。首先,对地铁站点的繁华程度、前一时段进站量、前一时段出站量及前一时段断面客流量等参数进行分析,并根据分析结果提出需要根据工作日和双休日分别对地铁客流量进行预测。其次,利用PSO算法对BLS的特征层偏置进行优化。最后,以福州地铁1号线AFC(自动售检票)系统中记录的大量乘客出行数据为例,对所提PSO-BLS算法进行验证。验证结果表明:与传统的地铁客流量预测算法BP(反向传播)神经网络和ELM(极限学习机)相比,PSO-BLS算法获得的计算结果在多项性能指标中均取得了较优异的表现;对BLS的特征层偏置进行优化可以提高BLS的计算精度,为地铁客流量预测提供更精确的计算结果。

Keyword:

地铁 客流预测 宽度学习系统 粒子群优化

Community:

  • [ 1 ] 福州轨道交通设计院有限公司
  • [ 2 ] 福州大学数学与计算机科学学院
  • [ 3 ] 福州大学智慧地铁福建省高校重点实验室
  • [ 4 ] 福州地铁集团有限公司

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

城市轨道交通研究

ISSN: 1007-869X

CN: 31-1749/U

Year: 2023

Issue: 05

Volume: 26

Page: 23-26,33

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:731/10346865
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1