Indexed by:
Abstract:
Ultrathin TiO2 nanosheets (NST) containing Ti3+ sites are developed as a photocatalyst that exhibits high degradation efficiencies (98.6%) for the degradation of enrofloxacin (ENR) under visible light. The increment of degradation efficiencies for ENR over NST is mainly due to the increase of Ti3+ and oxygen vacancies (OVs). Ti3+ sites on the surface of NST can be associated with ENR molecules through the formation of surface coordination species -COO center dot center dot center dot Ti-intermediates, resulting in the activation of ENR. OVs on NST can adsorb and activate more O2 molecules to accelerate the generation of O2- by photogenerated electrons reduction. The photogenerated holes quickly transfer to the surface of the catalyst to directly degrade the activated ENR. Finally, a possible mechanism about the synergistic effect of coordination activation and photocatalysis is proposed over NST at a molecule level. This study highlights the significant role of coordination activation in the photocatalytic degradation of antibiotics.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED CATALYSIS A-GENERAL
ISSN: 0926-860X
Year: 2023
Volume: 660
4 . 7
JCR@2023
4 . 7 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 19
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5