Indexed by:
Abstract:
This paper focuses on the Rayleigh-Taylor instability in the system of equations of the two-dimensional nonhomogeneous incompressible Euler-Korteweg equations in a horizontal periodic domain with infinite height. First, we use variational method to construct (linear) unstable solutions for the linearized capillary Rayleigh- Taylor problem. Then, motivated by the Grenier's idea in [21], we further construct approximate solutions with higher-order growing modes to the capillary Rayleigh- Taylor problem due to the absence of viscosity in the system, and derive the error estimates between both the approximate solutions and nonlinear solutions of the capillary Rayleigh-Taylor problem. Finally, we prove the existence of escape points based on the bootstrap instability method of Hwang-Guo in [28], and thus obtain the nonlinear Rayleigh-Taylor instability result, which presents that the Rayleigh- Taylor instability can occur in the capillary fluids for any capillary coefficient kappa > 0 if the critical capillary number is infinite. (c) 2022 Elsevier Inc. All rights reserved.
Keyword:
Reprint 's Address:
Version:
Source :
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
ISSN: 0022-247X
Year: 2023
Issue: 2
Volume: 520
1 . 2
JCR@2023
1 . 2 0 0
JCR@2023
ESI Discipline: MATHEMATICS;
ESI HC Threshold:13
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: