Indexed by:
Abstract:
Light-driven fixation of CO2 in organics has emerged as an appealing alternative for the synthesis of value-added fine chemicals. Challenges remain in the transformation of CO2 as well as product selectivity due to its thermodynamic stability and kinetic inertness. Here we develop a boron carbonitride (BCN) with the abundant terminal B/N defects around the mesoporous walls, which essentially enhances surface active sites as well as charge transfer kinetics, boosting the overall rate of CO2 adsorption and activation. In this protocol, anti-Markovnikov hydrocarboxylation of alkenes with CO2 to an extended carbon chain is achieved with good functional group tolerance and specific regioselectivity under visible-light irradiation. The mechanistic studies demonstrate the formation of CO2 radical anion intermediate on defective boron carbonitride, leading to the anti-Markovnikov carboxylation. Gram-scale reaction, late-stage carboxylation of natural products and synthesis of anti-diabetic GPR40 agonists reveal the utility of this method. This study sheds new insight on the design and application of metal-free semiconductors for the conversion of CO2 in an atom-economic and sustainable manner.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
ISSN: 1433-7851
Year: 2023
1 6 . 1
JCR@2023
1 6 . 1 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 32
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2