Indexed by:
Abstract:
Vinylene-linked covalent organic frameworks (COFs) are promising photocatalysts owing to their fully conjugated skeletons that facilitate charge carrier mobility. Constructing donor-acceptor (D-A) architectures could further enhance photoinduced charge generation and transport, thus promoting photocatalysis. Therefore, three D-A-type vinylene-linked COFs were fabricated via Knoevenagel polymerization for efficient photocatalysis. By varying the donor moieties from phenyl to 2,5-dimethylbenzene and 3,3'-dimethyl-1,1'-biphenyl in the skeletons, the light-harvesting, opti-cal-bandgap, and charge-transfer properties of the COFs were precisely regulated. All three COFs exhibited attractive photocatalytic hydrogen evolution rates (HERs) upon visible-light irradiation, especially that fabricated using 2,4,6-trimethyl-1,3,5-triazine (TM) and 3,3'-dimethyl[1,1'-biphenyl]-4,4'-dicarboxaldehyde (DMA, TM-DMA-COF). TM-DMA-COF exhibited the strongest D-A interactions, excellent charge-carrier separation and transfer kinetics, and a re-duced energy barrier for H-2 formation. Thus, it afforded the highest HER of 4300 mu mol h(-1) gcat(-1), surpassing those of most state-of-the-art COF photocatalysts. This study provides a simple and effective protocol for modulating the photocatalytic activities of COFs at the molecular level and an interesting insight into the relationship between structural design and photocatalytic performance. (c) 2023, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Version:
Source :
CHINESE JOURNAL OF CATALYSIS
ISSN: 0253-9837
CN: 21-1601/O6
Year: 2023
Volume: 47
Page: 171-180
1 5 . 7
JCR@2023
1 5 . 7 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 69
SCOPUS Cited Count: 71
ESI Highly Cited Papers on the List: 8 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: