Indexed by:
Abstract:
To resolve the problems of deep convolutional neural network models with many parameters and high memory resource consumption, a lightweight network-based algorithm for building detection of Minnan folk light synthetic aperture radar (SAR) images is proposed. Firstly, based on the rotating target detection algorithm R-centernet, the Ghost ResNet network is constructed to reduce the number of model parameters by replacing the traditional convolution in the backbone network with Ghost convolution. Secondly, a channel attention module integrating width and height information is proposed to enhance the network's ability to accurately locate salient regions in folk light images. Content-aware reassembly of features (CARAFE) up-sampling is used to replace the deconvolution module in the network to fully incorporate feature map information during up-sampling to improve target detection. Finally, the constructed dataset of rotated and annotated light and shadow SAR images is trained and tested using the improved R-centernet algorithm. The experimental results show that the improved algorithm improves the accuracy by 3.8%, the recall by 1.2% and the detection speed by 12 frames/second compared with the original R-centernet algorithm.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
BUILDINGS
ISSN: 2075-5309
Year: 2023
Issue: 6
Volume: 13
3 . 1
JCR@2023
3 . 1 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:35
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: