Indexed by:
Abstract:
The causes of landslide disasters are complex, and landslide susceptibility assessment is of great significance for disaster warning, prevention, and control management. In the previous mapping studies on landslide susceptibility assessment, land use change factor was not considered. This paper proposed a combination of factors for landslide susceptibility assessment by considering land use dynamic change factor. The landslide frequency ratio was used to quantitatively measure the correlation between land use change and landslide development. And Logistic Regression (LR) model was used to compare the prediction ability of the model before and after the introduction of land use change factor. We constructed three machine learning models: Decision Tree (DT), Gradient Boosting Decision Tree (GBDT), and Random Forest (RF). We used AUC and other indicators to compare model performance. Finally, we took Sanming City of Fujian Province as the study area and the whole Fujian Province as the verification area to conduct the landslide susceptibility assessment research. The results show that there is a strong correlation between land use change factor and landslide development. The inclusion of land use change factor improves model prediction accuracy, which indicates that it is necessary to introduce dynamic factor in the assessment of landslide susceptibility. The verification results show that RF model has higher prediction accuracy than DT and GBDT. The high landslide prone areas are mainly distributed in the west and central of Sanming City, where the land use change degree is high, and the impact of human activities is great. The low landslide prone areas basically locate in the high-altitude areas with little influence of human activities. This study provides a new research perspective for landslide susceptibility assessment and helps to explore the impact of human activities on disaster formation. © 2023 Journal of Geo-information Science. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Journal of Geo-Information Science
ISSN: 1560-8999
CN: 11-5809/P
Year: 2023
Issue: 5
Volume: 25
Page: 953-966
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: