• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Han, Xiao (Han, Xiao.) [1] | Liu, Ailin (Liu, Ailin.) [2] | Wang, Shihao (Wang, Shihao.) [3] | Liu, Yuanyuan (Liu, Yuanyuan.) [4] | Li, Saichao (Li, Saichao.) [5] | Zhang, Yinggan (Zhang, Yinggan.) [6] | Zheng, Hongfei (Zheng, Hongfei.) [7] | Sa, Baisheng (Sa, Baisheng.) [8] (Scholars:萨百晟) | Wang, Laisen (Wang, Laisen.) [9] | Lin, Jie (Lin, Jie.) [10] | Qu, Baihua (Qu, Baihua.) [11] | Xie, Qingshui (Xie, Qingshui.) [12] | Peng, Dong-Liang (Peng, Dong-Liang.) [13]

Indexed by:

EI Scopus SCIE

Abstract:

High-capacity Li-rich layered oxides (LLOs) suffer from severe structure degradation due to the utilization of hybrid anion- and cation-redox activity. The native post-cycled structure, composed of progressively densified defective spinel layer (DSL) and intrinsic cations mixing, is deemed as the hindrance of the rapid and reversible de/intercalation of Li+. Herein, the artificial post-cycled structure consisting of artificial DSL and inner cations mixing is in situ constructed, which would act as a shield against the irreversible oxygen emission and undesirable transition metal migration by suppressing anion redox activity and modulating cation mixing. Eventually, the modified DSL-2% Li-rich cathode demonstrates remarkable electrochemical properties with a high discharge capacity of 187 mAh g(-1) after 500 cycles at 2 C, and improved voltage stability. Even under harsh operating conditions of 50 & DEG;C, DSL-2% can provide a high discharge capacity of 168 mAh g(-1) after 250 cycles at 2 C, which is much higher than that of pristine LLO (92 mAh g(-1)). Furthermore, the artificial post-cycled structure provides a novel perspective on the role of native post-cycled structure in sustaining the lattice structure of the lithium-depleted region and also provides an insightful universal design principle for highly stable intercalated materials with anionic redox activity.

Keyword:

artificial post-cycled structures cation mixing cycling stability electronic structure modulation Li-rich layered cathodes

Community:

  • [ 1 ] [Han, Xiao]Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
  • [ 2 ] [Liu, Ailin]Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
  • [ 3 ] [Wang, Shihao]Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
  • [ 4 ] [Liu, Yuanyuan]Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
  • [ 5 ] [Li, Saichao]Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
  • [ 6 ] [Zhang, Yinggan]Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
  • [ 7 ] [Zheng, Hongfei]Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
  • [ 8 ] [Wang, Laisen]Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
  • [ 9 ] [Lin, Jie]Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
  • [ 10 ] [Xie, Qingshui]Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
  • [ 11 ] [Peng, Dong-Liang]Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
  • [ 12 ] [Sa, Baisheng]Fuzhou Univ, Coll Mat Sci & Engn, Multiscale Computat Mat Facil, Fuzhou 350100, Peoples R China
  • [ 13 ] [Qu, Baihua]Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
  • [ 14 ] [Xie, Qingshui]Xiamen Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China

Reprint 's Address:

Show more details

Related Keywords:

Source :

SMALL

ISSN: 1613-6810

Year: 2023

Issue: 47

Volume: 19

1 3 . 0

JCR@2023

1 3 . 0 0 0

JCR@2023

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:49

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 2

SCOPUS Cited Count: 2

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:1323/10807595
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1