Indexed by:
Abstract:
With the increasing popularity of GPS-equipped mobile devices in cloud-assisted fog computing scenarios, massive spatio-textual data is generated and outsourced to cloud servers for storage and analysis. Existing privacy-preserving range query or ranked keyword search schemes does not support a unified index, and are just applicable for the symmetric environment where all users sharing the same secret key. To solve this issue, we propose a Privacy-preserving Ranked Spatial keyword Query in mobile cloud-assisted Fog computing (PRSQ-F). Specifically, we design a novel comparable product encoding strategy that combines both spatial and textual conditions tightly to retrieve the objects in query range and with the highest textual similarity. Then, we use a new conversion protocol and attribute-based encryption to support privacy-preserving retrieval and malicious user traceability in the asymmetric environment where different query users have different keys. Furthermore, we construct an R-tree-based index to achieve faster-than-linear retrieval. Our formal security analysis shows that data security can be guaranteed. Our empirical experiments using a real-world dataset demonstrate the efficiency and feasibility of PRSQ-F.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON MOBILE COMPUTING
ISSN: 1536-1233
Year: 2023
Issue: 6
Volume: 22
Page: 3604-3618
7 . 7
JCR@2023
7 . 7 0 0
JCR@2023
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:32
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: